Mostrar el registro sencillo del ítem
dc.contributor.author
Auat Cheein, F.
dc.contributor.author
Steiner, G.
dc.contributor.author
Perez Paina, G.
dc.contributor.author
Carelli Albarracin, Ricardo Oscar
dc.date.available
2023-03-06T17:23:04Z
dc.date.issued
2011-09
dc.identifier.citation
Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli Albarracin, Ricardo Oscar; Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection; Elsevier; Computers and Eletronics in Agriculture; 78; 2; 9-2011; 195-207
dc.identifier.issn
0168-1699
dc.identifier.uri
http://hdl.handle.net/11336/189712
dc.description.abstract
Precision agricultural maps are required for agricultural machinery navigation, path planning and plantation supervision. In this work we present a Simultaneous Localization and Mapping (SLAM) algorithm solved by an Extended Information Filter (EIF) for agricultural environments (olive groves). The SLAM algorithm is implemented on an unmanned non-holonomic car-like mobile robot. The map of the environment is based on the detection of olive stems from the plantation. The olive stems are acquired by means of both: a range sensor laser and a monocular vision system. A support vector machine (SVM) is implemented on the vision system to detect olive stems on the images acquired from the environment. Also, the SLAM algorithm has an optimization criterion associated with it. This optimization criterion is based on the correction of the SLAM system state vector using only the most meaningful stems - from an estimation convergence perspective - extracted from the environment information without compromising the estimation consistency. The optimization criterion, its demonstration and experimental results within real agricultural environments showing the performance of our proposal are also included in this work.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AGRICULTURAL MAPPING
dc.subject
MOBILE ROBOT
dc.subject
SLAM
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-03-05T15:34:53Z
dc.journal.volume
78
dc.journal.number
2
dc.journal.pagination
195-207
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Auat Cheein, F.. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Steiner, G.. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Perez Paina, G.. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computers and Eletronics in Agriculture
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168169911001542
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2011.07.007
Archivos asociados