Mostrar el registro sencillo del ítem

dc.contributor.author
Auat Cheein, F.  
dc.contributor.author
Steiner, G.  
dc.contributor.author
Perez Paina, G.  
dc.contributor.author
Carelli Albarracin, Ricardo Oscar  
dc.date.available
2023-03-06T17:23:04Z  
dc.date.issued
2011-09  
dc.identifier.citation
Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli Albarracin, Ricardo Oscar; Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection; Elsevier; Computers and Eletronics in Agriculture; 78; 2; 9-2011; 195-207  
dc.identifier.issn
0168-1699  
dc.identifier.uri
http://hdl.handle.net/11336/189712  
dc.description.abstract
Precision agricultural maps are required for agricultural machinery navigation, path planning and plantation supervision. In this work we present a Simultaneous Localization and Mapping (SLAM) algorithm solved by an Extended Information Filter (EIF) for agricultural environments (olive groves). The SLAM algorithm is implemented on an unmanned non-holonomic car-like mobile robot. The map of the environment is based on the detection of olive stems from the plantation. The olive stems are acquired by means of both: a range sensor laser and a monocular vision system. A support vector machine (SVM) is implemented on the vision system to detect olive stems on the images acquired from the environment. Also, the SLAM algorithm has an optimization criterion associated with it. This optimization criterion is based on the correction of the SLAM system state vector using only the most meaningful stems - from an estimation convergence perspective - extracted from the environment information without compromising the estimation consistency. The optimization criterion, its demonstration and experimental results within real agricultural environments showing the performance of our proposal are also included in this work.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AGRICULTURAL MAPPING  
dc.subject
MOBILE ROBOT  
dc.subject
SLAM  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-03-05T15:34:53Z  
dc.journal.volume
78  
dc.journal.number
2  
dc.journal.pagination
195-207  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Auat Cheein, F.. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Steiner, G.. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Perez Paina, G.. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computers and Eletronics in Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168169911001542  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2011.07.007