Artículo
A generalization of Toeplitz operators on the Bergman space
Fecha de publicación:
08/2015
Editorial:
Theta Foundation
Revista:
Journal Of Operator Theory
ISSN:
0379-4024
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
If μ μ is a finite measure on the unit disc and k ⩾ 0 k⩾0 is an integer, we study a generalization derived from Engli\v{s}'s work, T ( k ) μ Tμ(k), of the traditional Toeplitz operators on the Bergman space \berg \berg, which are the case k = 0 k=0. Among other things, we prove that when μ ⩾ 0 μ⩾0, these operators are bounded if and only if μ μ is a Carleson measure, they are compact if and only if μ μ is a vanishing Carleson measure, and we obtain some estimates for their norms. Also, we use these operators to characterize the closure of the image of the Berezin transform applied to the whole operator algebra.
Palabras clave:
Bergman Space
,
Toeplitz Operators
,
Berezin Transform
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Suarez, Fernando Daniel; A generalization of Toeplitz operators on the Bergman space; Theta Foundation; Journal Of Operator Theory; 73; 2; 8-2015; 315-332
Compartir
Altmétricas