Mostrar el registro sencillo del ítem

dc.contributor.author
Bali, Juan Lucas  
dc.contributor.author
Boente Boente, Graciela Lina  
dc.date.available
2017-06-26T20:43:18Z  
dc.date.issued
2015-01  
dc.identifier.citation
Bali, Juan Lucas; Boente Boente, Graciela Lina; Influence function of projection-pursuit principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 173-199  
dc.identifier.issn
0047-259X  
dc.identifier.uri
http://hdl.handle.net/11336/18939  
dc.description.abstract
In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Elliptical Distribution  
dc.subject
Fisher-Consistency  
dc.subject
Functional Principal Component  
dc.subject
Influence Function  
dc.subject
Robust Estimation  
dc.subject
Smoothing  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Influence function of projection-pursuit principal components for functional data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:08:08Z  
dc.journal.volume
133  
dc.journal.pagination
173-199  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Bali, Juan Lucas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Multivariate Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmva.2014.09.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14002012