Mostrar el registro sencillo del ítem
dc.contributor.author
Bali, Juan Lucas
dc.contributor.author
Boente Boente, Graciela Lina
dc.date.available
2017-06-26T20:43:18Z
dc.date.issued
2015-01
dc.identifier.citation
Bali, Juan Lucas; Boente Boente, Graciela Lina; Influence function of projection-pursuit principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 173-199
dc.identifier.issn
0047-259X
dc.identifier.uri
http://hdl.handle.net/11336/18939
dc.description.abstract
In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Elliptical Distribution
dc.subject
Fisher-Consistency
dc.subject
Functional Principal Component
dc.subject
Influence Function
dc.subject
Robust Estimation
dc.subject
Smoothing
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Influence function of projection-pursuit principal components for functional data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-26T14:08:08Z
dc.journal.volume
133
dc.journal.pagination
173-199
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Bali, Juan Lucas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal Of Multivariate Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmva.2014.09.004
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14002012
Archivos asociados