Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Defant, Andreas  
dc.contributor.author
Sevilla Peris, Pablo  
dc.date.available
2017-06-26T20:43:11Z  
dc.date.issued
2016-01  
dc.identifier.citation
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Some polynomial versions of cotype and applications; Elsevier Inc; Journal Of Functional Analysis; 270; 1; 1-2016; 68-87  
dc.identifier.issn
0022-1236  
dc.identifier.uri
http://hdl.handle.net/11336/18938  
dc.description.abstract
We introduce non-linear versions of the classical cotype of Banach spaces. We show that spaces with l.u.st. and cotype, and spaces having Fourier cotype enjoy our non-linear cotype. We apply these concepts to get results on convergence of vector-valued power series in infinite many variables and on L1-multipliers of vector-valued Dirichlet series. Finally we introduce cotype with respect to indexing sets, an idea that includes our previous definitions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Cotype  
dc.subject
Banach Spaces  
dc.subject
Monomial Convergence  
dc.subject
Vector-Valued Dirichlet Series  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Some polynomial versions of cotype and applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:08:40Z  
dc.journal.volume
270  
dc.journal.number
1  
dc.journal.pagination
68-87  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Defant, Andreas. Universität Oldenburg; Alemania  
dc.description.fil
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España  
dc.journal.title
Journal Of Functional Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2015.09.017  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123615003870  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.00850