Mostrar el registro sencillo del ítem

dc.contributor.author
Chiumiento, Eduardo Hernan  
dc.date.available
2017-06-26T20:39:38Z  
dc.date.issued
2012-11  
dc.identifier.citation
Chiumiento, Eduardo Hernan; Examples of homogeneous manifolds with uniformly bounded metric projection; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 53; 2; 11-2012; 13-23  
dc.identifier.issn
0041-6932  
dc.identifier.uri
http://hdl.handle.net/11336/18935  
dc.description.abstract
Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Unión Matemática Argentina  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Finite Von Neumann Algebra  
dc.subject
Metric Projection  
dc.subject
Homogeneous Space  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Examples of homogeneous manifolds with uniformly bounded metric projection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T19:50:58Z  
dc.identifier.eissn
1669-9637  
dc.journal.volume
53  
dc.journal.number
2  
dc.journal.pagination
13-23  
dc.journal.pais
Argentina  
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Económicas; Argentina  
dc.journal.title
Revista de la Union Matemática Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a02.pdf