Artículo
Stiefel and Grassmann manifolds in quantum chemistry
Fecha de publicación:
08/2012
Editorial:
Elsevier Science
Revista:
Journal Of Geometry And Physics
ISSN:
0393-0440
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slater type variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove that they are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds.These geometric properties underpin state-of-the-art results on existence of solutions to Hartree-Fock type equations.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Chiumiento, Eduardo Hernan; Melgaard, Michael; Stiefel and Grassmann manifolds in quantum chemistry; Elsevier Science; Journal Of Geometry And Physics; 62; 8; 8-2012; 1866-1881
Compartir
Altmétricas