Artículo
Fracture-induced anisotropic attenuation
Fecha de publicación:
06/2012
Editorial:
Springer Wien
Revista:
Rock Mechanics and Rock Engineering
ISSN:
0723-2632
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The triaxial nature of the tectonic stress in the earth's crust favors the appearance of vertical fractures. The resulting rheology is usually effective anisotropy with orthorhombic and monoclinic symmetries. In addition, the presence of fluids leads to azimuthally varying attenuation of seismic waves. A dense set of fractures embedded in a background medium enhances anisotropy and rock compliance. Fractures are modeled as boundary discontinuities in the displacement u and particle velocity v as [ κ · u + ν · v] where the brackets denote discontinuities across the fracture surface, j is a fracture stiffness, and g is a viscosity related to the energy loss. We consider a transversely isotropic background medium (e.g., thin horizontal plane layers), with sets of long vertical fractures. Schoenberg and Muir's theory combines the background medium and sets of vertical fractures to provide the 13 complex stiffnesses of the long-wavelength equivalent monoclinic and viscoelastic medium. Long-wavelength equivalent means that the dominant wavelength of the signal is much longer than the fracture spacing. The symmetry plane is the horizontal plane. The equations for orthorhombic and transversely isotropic media follow as particular cases. We compute the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts), and quality factors. The effective medium ranges from monoclinic symmetry to hexagonal (transversely isotropic) symmetry from the low-to the high-frequency limits in the case of a particle-velocity discontinuity (lossy case) and the attenuation shows typical Zener relaxation peaks as a function of frequency. The attenuation of the coupled waves may show important differences when computed versus the ray or phase angles, with triplication appearing in the Q factor of the qS wave. We have performed a full-wave simulation to compute the field corresponding to the coupled qP-qS waves in the symmetry plane of an effective monoclinic medium. The simulations agree with the predictions of the plane-wave analysis.
Palabras clave:
ANISOTROPY
,
ATTENUATION
,
BOUNDARY CONDITIONS
,
FRACTURES
,
SCHOENBERG-MUIR THEORY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Carcione, Jose M.; Santos, Juan Enrique; Picotti, Stefano; Fracture-induced anisotropic attenuation; Springer Wien; Rock Mechanics and Rock Engineering; 45; 5; 6-2012; 929-942
Compartir
Altmétricas