Artículo
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
Fecha de publicación:
06/2012
Editorial:
Elsevier
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.
Palabras clave:
Crossed Products
,
Hochschild (Co)Homology
,
Cyclic Homology
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products; Elsevier; Advances in Mathematics; 231; 6; 6-2012; 3502-3568
Compartir
Altmétricas