Artículo
Subresultants, sylvester sums and the rational interpolation problem
Fecha de publicación:
06/2015
Editorial:
Elsevier
Revista:
Journal Of Symbolic Computation
ISSN:
0747-7171
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn.
Palabras clave:
Rational Interpolation
,
Subresultants
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Subresultants, sylvester sums and the rational interpolation problem; Elsevier; Journal Of Symbolic Computation; 68; Part 1; 6-2015; 72-83
Compartir
Altmétricas