Mostrar el registro sencillo del ítem
dc.contributor.author
Perez, Maria Dolores
dc.contributor.author
Plá, Juan Francisco Esteban
dc.contributor.other
Amorim Fraga, Mariana
dc.contributor.other
Amos, Delaina
dc.contributor.other
Sonmezoglu, Savas
dc.contributor.other
Subramaniam, Velumani
dc.date.available
2023-02-28T15:55:24Z
dc.date.issued
2021
dc.identifier.citation
Perez, Maria Dolores; Plá, Juan Francisco Esteban; Emergent Materials and Concepts for Solar Cell Applications; Elsevier; 2021; 37-70
dc.identifier.isbn
9780128215920
dc.identifier.uri
http://hdl.handle.net/11336/189131
dc.description.abstract
The recent years saw a remarkable progress in solar cell materials and designs. Among all the available photovoltaic technologies, two of them stand out from the rest because of very rapid efficiency growth: III–V semiconductors and perovskite-based solar cells (PSC). In this chapter, we review the recent history and the ultimate concepts that concern the materials application at device level. PSC were first described in 2009 and their reported efficiency quickly reached more than 24%. This unmatched efficiency evolution is accompanied by a potential cost reduction due to the ease of fabrication from solution processing. Also, the possibility of low temperature processing allows the use of flexible substrates that could include new markets that are unthinkable for other technologies. A global widespread of the PSC research helps understanding of the degradation and hysteresis issues that will in turn allow a near future commercial product. Respect to III–V materials, we witnessed the transition from the lattice matched structures to concepts that overcome the limits of the standard triple-junction cells. Graded lattice materials, named metamorphic (MM), allow bandgap engineering to optimize the solar spectrum match. Another concept explored to exceed the limits of lattice matched materials was the bonding of structures grown on different substrates. This conducted to the recent record obtained at module level in concentrating photovoltaics applications. Finally, design based on six junctions inverted MM achieved the last efficiency record of 47.1% at 143 suns. The cases considered in this chapter show two convergent strategies to improve the solar cell performance as an energy source: the potential of low cost at fairly competitive efficiencies for PSCs; and the high cell cost afforded by ultra-high efficiency of III–Vs under concentration. These emergent technologies are summoned as new actors in a world dominated by the well-established crystalline silicon technology.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PHOTOVOLTAIC MATERIALS
dc.subject
SOLAR CELLS
dc.subject
PEROVSKITES
dc.subject
III-V SEMICONDUCTORS
dc.subject
EMERGENT MATERIALS
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Emergent Materials and Concepts for Solar Cell Applications
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2022-10-04T14:42:57Z
dc.journal.pagination
37-70
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Perez, Maria Dolores. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina. Comision Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones no Nucleares. Gerencia Física (CAC). Grupo Energía Solar; Argentina
dc.description.fil
Fil: Plá, Juan Francisco Esteban. Comision Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones no Nucleares. Gerencia Física (CAC). Grupo Energía Solar; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-12-821592-0.00010-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780128215920000108
dc.conicet.paginas
544
dc.source.titulo
Sustainable Materials Solutions for Solar Energy Technologies
Archivos asociados