Mostrar el registro sencillo del ítem

dc.contributor.author
Perez, Maria Dolores  
dc.contributor.author
Plá, Juan Francisco Esteban  
dc.contributor.other
Amorim Fraga, Mariana  
dc.contributor.other
Amos, Delaina  
dc.contributor.other
Sonmezoglu, Savas  
dc.contributor.other
Subramaniam, Velumani  
dc.date.available
2023-02-28T15:55:24Z  
dc.date.issued
2021  
dc.identifier.citation
Perez, Maria Dolores; Plá, Juan Francisco Esteban; Emergent Materials and Concepts for Solar Cell Applications; Elsevier; 2021; 37-70  
dc.identifier.isbn
9780128215920  
dc.identifier.uri
http://hdl.handle.net/11336/189131  
dc.description.abstract
The recent years saw a remarkable progress in solar cell materials and designs. Among all the available photovoltaic technologies, two of them stand out from the rest because of very rapid efficiency growth: III–V semiconductors and perovskite-based solar cells (PSC). In this chapter, we review the recent history and the ultimate concepts that concern the materials application at device level. PSC were first described in 2009 and their reported efficiency quickly reached more than 24%. This unmatched efficiency evolution is accompanied by a potential cost reduction due to the ease of fabrication from solution processing. Also, the possibility of low temperature processing allows the use of flexible substrates that could include new markets that are unthinkable for other technologies. A global widespread of the PSC research helps understanding of the degradation and hysteresis issues that will in turn allow a near future commercial product. Respect to III–V materials, we witnessed the transition from the lattice matched structures to concepts that overcome the limits of the standard triple-junction cells. Graded lattice materials, named metamorphic (MM), allow bandgap engineering to optimize the solar spectrum match. Another concept explored to exceed the limits of lattice matched materials was the bonding of structures grown on different substrates. This conducted to the recent record obtained at module level in concentrating photovoltaics applications. Finally, design based on six junctions inverted MM achieved the last efficiency record of 47.1% at 143 suns. The cases considered in this chapter show two convergent strategies to improve the solar cell performance as an energy source: the potential of low cost at fairly competitive efficiencies for PSCs; and the high cell cost afforded by ultra-high efficiency of III–Vs under concentration. These emergent technologies are summoned as new actors in a world dominated by the well-established crystalline silicon technology.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PHOTOVOLTAIC MATERIALS  
dc.subject
SOLAR CELLS  
dc.subject
PEROVSKITES  
dc.subject
III-V SEMICONDUCTORS  
dc.subject
EMERGENT MATERIALS  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Emergent Materials and Concepts for Solar Cell Applications  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2022-10-04T14:42:57Z  
dc.journal.pagination
37-70  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Perez, Maria Dolores. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina. Comision Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones no Nucleares. Gerencia Física (CAC). Grupo Energía Solar; Argentina  
dc.description.fil
Fil: Plá, Juan Francisco Esteban. Comision Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones no Nucleares. Gerencia Física (CAC). Grupo Energía Solar; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-12-821592-0.00010-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780128215920000108  
dc.conicet.paginas
544  
dc.source.titulo
Sustainable Materials Solutions for Solar Energy Technologies