Mostrar el registro sencillo del ítem

dc.contributor.author
Afonso Mourao Terra, Joana Isabel  
dc.date.available
2017-06-26T19:57:49Z  
dc.date.issued
2016-09  
dc.identifier.citation
Afonso Mourao Terra, Joana Isabel; Stable solutions of equations with a quadratic gradient term; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 196; 9-2016; 1-22  
dc.identifier.issn
1072-6691  
dc.identifier.uri
http://hdl.handle.net/11336/18910  
dc.description.abstract
We consider positive solutions to a non-variational family of equations of the form−∆u − b(x)|∇u| 2 = λg(u) in Ω,where λ ≥ 0, b(x) is a given function, g is an increasing nonlinearity with g(0) > 0 and Ω ∈ R n isa bounded smooth domain. We introduce the definition of stability for nonvariational problemsand establish existence and regularity results for stable solutions. These results generalize theclasical results obtained when b(x) = b is a constant function making the problem variationalafter a suitable transformation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Texas State University. Department of Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Elliptic Equations  
dc.subject
Gradient Quadratic Term  
dc.subject
Stable Solutions  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stable solutions of equations with a quadratic gradient term  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:09:11Z  
dc.journal.volume
2016  
dc.journal.number
196  
dc.journal.pagination
1-22  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Texas  
dc.description.fil
Fil: Afonso Mourao Terra, Joana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina  
dc.journal.title
Electronic Journal of Differential Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/196/abstr.html