Mostrar el registro sencillo del ítem

dc.contributor.author
Wolanski, Noemi Irene  
dc.date.available
2017-06-26T19:57:23Z  
dc.date.issued
2015-04  
dc.identifier.citation
Wolanski, Noemi Irene; Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 56; 1; 4-2015; 73-105  
dc.identifier.issn
0041-6932  
dc.identifier.uri
http://hdl.handle.net/11336/18906  
dc.description.abstract
We obtain a Harnack type inequality for solutions to elliptic equations in divergence form with non-standard p(x)-type growth. A model equation is the inhomogeneous p(x)-Laplacian. Namely, ∆p(x)u := div |∇u| p(x)−2∇u = f(x) in Ω, for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N p1 } < q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through k|u| p(x)k p2−p1 L1(Ω) . Dependence of the constant on u is known to be necessary in the case of variable p(x). As in previous papers, log-H¨older continuity on the exponent p(x) is assumed. We also prove that weak solutions are locally bounded and H¨older continuous when f ∈ Lq0(x) (Ω) with q0 ∈ C(Ω) and max{1, N p(x) } < q0(x) in Ω. These results are then generalized to elliptic equations div A(x, u, ∇u) = B(x, u, ∇u) with p(x)-type growth.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Unión Matemática Argentina  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Harnack'S Inequality  
dc.subject
Variable Exponent Spaces  
dc.subject
Local Bounds.  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-26T14:07:09Z  
dc.identifier.eissn
1669-9637  
dc.journal.volume
56  
dc.journal.number
1  
dc.journal.pagination
73-105  
dc.journal.pais
Argentina  
dc.journal.ciudad
Bahia Blanca  
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Revista de la Union Matemática Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v56n1/v56n1a05.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.2227