Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Cyclic homology, tight crossed products, and small stabilizations

Cortiñas, Guillermo HoracioIcon
Fecha de publicación: 12/2014
Editorial: European Mathematical Society
Revista: Journal of Noncommutative Geometry
ISSN: 1661-6952
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In [1] we associated an algebra 1.A/ to every bornological algebra A and an ideal IS.A/ C 1.A/ to every symmetric ideal S C `1. We showed that IS.A/ has K-theoretical properties which are similar to those of the usual stabilization with respect to the ideal JS C B of the algebra B of bounded operators in Hilbert space which corresponds to S under Calkin’s correspondence. In the current article we compute the relative cyclic homology HC. 1.A/ W IS.A//. Using these calculations, and the results of loc. cit., we prove that if A is a C -algebra and c0 the symmetric ideal of sequences vanishing at infinity, then K.Ic0.A// is homotopy invariant, and that if 0, it contains K top .A/ as a direct summand. This is a weak analogue of the Suslin–Wodzicki theorem ([20]) that says that for the ideal K D Jc0 of compact operators and the C -algebra tensor product A ˝ K, we have K.A ˝ K/ D K top .A/. Similarly, we prove that if A is a unital Banach algebra and `1 D S q<1 ` q , then K.I`1.A// is invariant under Hölder continuous homotopies, and that for 0 it contains K top .A/ as a direct summand. These K-theoretic results are obtained from cyclic homology computations. We also compute the relative cyclic homology groups HC. 1.A/ W IS.A// in terms of HC.`1.A/ W S.A// for general A and S. For A D C and general S, we further compute the latter groups in terms of algebraic differential forms. We prove that the map HCn. 1.C/ W IS.C// ! HCn.B W JS / is an isomorphism in many cases. Mathematics In [1] (arXiv:1212.5901) we associated an algebra 1.A/ to every bornological algebra A and an ideal IS.A/ C 1.A/ to every symmetric ideal S C `1. We showed that IS.A/ has K-theoretical properties which are similar to those of the usual stabilization with respect to the ideal JS C B of the algebra B of bounded operators in Hilbert space which corresponds to S under Calkin’s correspondence. In the current article we compute the relative cyclic homology HC. 1.A/ W IS.A//. Using these calculations, and the results of loc. cit., we prove that if A is a C -algebra and c0 the symmetric ideal of sequences vanishing at infinity, then K.Ic0.A// is homotopy invariant, and that if 0, it contains K top .A/ as a direct summand. This is a weak analogue of the Suslin–Wodzicki theorem ([20]) that says that for the ideal K D Jc0 of compact operators and the C -algebra tensor product A ˝ K, we have K.A ˝ K/ D K top .A/. Similarly, we prove that if A is a unital Banach algebra and `1 D S q<1 ` q , then K.I`1.A// is invariant under Hölder continuous homotopies, and that for 0 it contains K top .A/ as a direct summand. These K-theoretic results are obtained from cyclic homology computations. We also compute the relative cyclic homology groups HC. 1.A/ W IS.A// in terms of HC.`1.A/ W S.A// for general A and S. For A D C and general S, we further compute the latter groups in terms of algebraic differential forms. We prove that the map HCn. 1.C/ W IS.C// ! HCn.B W JS / is an isomorphism in many cases.
Palabras clave: Cyclic Homology , Relative K-Theory , Homotopy Invariance
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 334.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/18899
URL: https://arxiv.org/abs/1304.3508
DOI: http://dx.doi.org/10.4171/JNCG/184
URL: http://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=8&iss=4&rank
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Cyclic homology, tight crossed products, and small stabilizations; European Mathematical Society; Journal of Noncommutative Geometry; 8; 4; 12-2014; 1191-1223
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES