Mostrar el registro sencillo del ítem

dc.contributor.author
Bastida, Adolfo  
dc.contributor.author
Soler, Miguel A.  
dc.contributor.author
Zúñiga, José  
dc.contributor.author
Requena, Alberto  
dc.contributor.author
Kalstein, Adrian  
dc.contributor.author
Fernández Alberti, Sebastián  
dc.date.available
2023-02-27T10:55:56Z  
dc.date.issued
2012-02  
dc.identifier.citation
Bastida, Adolfo; Soler, Miguel A.; Zúñiga, José; Requena, Alberto; Kalstein, Adrian; et al.; Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution; American Chemical Society; Journal of Physical Chemistry B; 116; 9; 2-2012; 2969-2980  
dc.identifier.issn
1520-6106  
dc.identifier.uri
http://hdl.handle.net/11336/188902  
dc.description.abstract
Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM0) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INMt). The identities of both the INM0s and the INMts are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
vibrational relaxation  
dc.subject
intramolecular energy redistribution  
dc.subject
normal modes  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hybrid Quantum/Classical simulations of the vibrational relaxation of the Amide I mode of N-methylacetamide in D2O solution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-26T15:31:26Z  
dc.journal.volume
116  
dc.journal.number
9  
dc.journal.pagination
2969-2980  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Bastida, Adolfo. Universidad de Murcia; España  
dc.description.fil
Fil: Soler, Miguel A.. Universidad de Murcia; España  
dc.description.fil
Fil: Zúñiga, José. Universidad de Murcia; España  
dc.description.fil
Fil: Requena, Alberto. Universidad de Murcia; España  
dc.description.fil
Fil: Kalstein, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Physical Chemistry B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp210727u  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/jp210727u