Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification

Schlotthauer, GastonIcon ; Torres, Maria EugeniaIcon ; Jackson Menaldi, María Cristina
Fecha de publicación: 05/2010
Editorial: Mosby-Elsevier
Revista: Journal Of Voice : Official Journal Of The Voice Foundation.
ISSN: 0892-1997
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD.
Palabras clave: MUSCLE TENSION DYSPHONIA , NEURAL NETWORKS , SPASMODIC DYSPHONIA , SUPPORT VECTOR MACHINES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 192.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/188891
URL: http://www.sciencedirect.com/science/article/pii/S0892199708001719
DOI: http://dx.doi.org/10.1016/j.jvoice.2008.10.007
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina; A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 24; 3; 5-2010; 346-353
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES