Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Small quotients in euclidean algorithms

Cesaratto, EdaIcon ; Vallée, Brigitte
Fecha de publicación: 12/2010
Editorial: Springer
Revista: Ramanujan Journal
ISSN: 1382-4090
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Numbers whose continued fraction expansion contains only small digits have been extensively studied. In the real case, the Hausdorff dimension σM of the reals with digits in their continued fraction expansion bounded by M was considered, and estimates of σM for M→∞ were provided by Hensley (J. Number Theory 40:336-358, 1992). In the rational case, first studies by Cusick (Mathematika 24:166-172, 1997), Hensley (In: Proc. Int. Conference on Number Theory, Quebec, pp. 371-385, 1987) and Vallée (J. Number Theory 72:183-235, 1998) considered the case of a fixed bound M when the denominator N tends to ∞. Later, Hensley (Pac. J. Math. 151(2):237-255, 1991) dealt with the case of a bound M which may depend on the denominator N, and obtained a precise estimate on the cardinality of rational numbers of denominator less than N whose digits (in the continued fraction expansion) are less than M(N), provided the bound M(N) is large enough with respect to N. This paper improves this last result of Hensley towards four directions. First, it considers various continued fraction expansions; second, it deals with various probability settings (and not only the uniform probability); third, it studies the case of all possible sequences M(N), with the only restriction that M(N) is at least equal to a given constant M0; fourth, it refines the estimates due to Hensley, in the cases that are studied by Hensley. This paper also generalises previous estimates due to Hensley (J. Number Theory 40:336-358, 1992) about the Hausdorff dimension σM to the case of other continued fraction expansions. The method used in the paper combines techniques from analytic combinatorics and dynamical systems and it is an instance of the Dynamical Analysis paradigm introduced by Vallée (J. Théor. Nr. Bordx. 12:531-570, 2000), and refined by Baladi and Vallée (J. Number Theory 110:331-386, 2005).
Palabras clave: CONTINUED FRACTIONS , EUCLIDEAN ALGORITHMS , HAUSDORFF DIMENSION , MAPS OF THE INTERVAL
Ver el registro completo
 
Archivos asociados
Tamaño: 901.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/188780
URL: https://link.springer.com/article/10.1007/s11139-010-9256-z
DOI: http://dx.doi.org/10.1007/s11139-010-9256-z
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Cesaratto, Eda; Vallée, Brigitte; Small quotients in euclidean algorithms; Springer; Ramanujan Journal; 24; 2; 12-2010; 183-218
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES