Mostrar el registro sencillo del ítem
dc.contributor.author
Herscovich Ramoneda, Estanislao Benito
dc.date.available
2017-06-26T16:42:23Z
dc.date.issued
2014-12
dc.identifier.citation
Herscovich Ramoneda, Estanislao Benito; Some remarks on representations of Yang-Mills algebras; American Institute of Physics; Journal Of Mathematical Physics; 56; 1; 12-2014; 1-6; 011702
dc.identifier.issn
0022-2488
dc.identifier.uri
http://hdl.handle.net/11336/18877
dc.description.abstract
In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Yang-Mills
dc.subject
Representation Theory
dc.subject
Gauge Theory
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Some remarks on representations of Yang-Mills algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-26T14:07:04Z
dc.journal.volume
56
dc.journal.number
1
dc.journal.pagination
1-6; 011702
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Herscovich Ramoneda, Estanislao Benito. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
Journal Of Mathematical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.4905857
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4905857
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.7028
Archivos asociados