Artículo
Energy Integrals and Metric Embedding Theory
Fecha de publicación:
10/2014
Editorial:
Oxford University Press
Revista:
International Mathematics Research Notices
ISSN:
1073-7928
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For some centrally symmetric convex bodies K ⊂ Rn, we study the energy integral sup K K x − yp r dμ(x) dμ(y), where the supremum runs over all finite signed Borel measures μ on K of total mass one. In the case where K = Bn q , the unit ball of n q (for 1 < q ≤ 2) or an ellipsoid, we obtain the exact value or the correct asymptotical behavior of the supremum of these integrals. We apply these results to a classical embedding problem in metric geometry. We consider in Rn the Euclidean distance d2. For 0 <α< 1, we estimate the minimum R for which the snowflaked metric space (K,dα 2 ) may be isometrically embedded on the surface of a Hilbert sphere of radius R. 1 I
Palabras clave:
Energy Integrals
,
P-Summing Operators
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Carando, Daniel Germán; Galicer, Daniel Eric; Pinasco, Damian; Energy Integrals and Metric Embedding Theory; Oxford University Press; International Mathematics Research Notices; 2015; 16; 10-2014; 7417-7435
Compartir
Altmétricas