Mostrar el registro sencillo del ítem
dc.contributor.author
Sarraute, Carlos
dc.contributor.author
Brea, Jorge
dc.contributor.author
Burroni, Javier
dc.contributor.author
Blanc, Pablo
dc.date.available
2017-06-26T15:41:31Z
dc.date.issued
2015-12
dc.identifier.citation
Sarraute, Carlos; Brea, Jorge; Burroni, Javier; Blanc, Pablo; Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology
; Springer; Social Network Analysis and Mining; 5; 12-2015; 1-16; 39
dc.identifier.issn
1869-5450
dc.identifier.uri
http://hdl.handle.net/11336/18865
dc.description.abstract
Mobile phone usage provides a wealth of information, which can be used to better understand the demographic structure of a population. In this paper, we focus on the population of Mexican mobile phone users. We first present an observational study of mobile phone usage according to gender and age groups. We are able to detect significant differences in phone usage among different subgroups of the population. We then study the performance of different machine learning (ML) methods to predict demographic features (namely, age and gender) of unlabeled users by leveraging individual calling patterns, as well as the structure of the communication graph. We show how a specific implementation of a diffusion model, harnessing the graph structure, has significantly better performance over other node-based standard ML methods. We provide details of the methodology together with an analysis of the robustness of our results to changes in the model parameters. Furthermore, by carefully examining the topological relations of the training nodes (seed nodes) to the rest of the nodes in the network, we find topological metrics which have a direct influence on the performance of the algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Social Network Analysis
dc.subject
Mobile Phone Social Network
dc.subject
Call Detail Records
dc.subject
Graph Mining
dc.subject
Demographics
dc.subject
Homophily
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-26T14:08:28Z
dc.identifier.eissn
1869-5469
dc.journal.volume
5
dc.journal.pagination
1-16; 39
dc.journal.pais
Austria
dc.journal.ciudad
Viena
dc.description.fil
Fil: Sarraute, Carlos. Grandata Labs; Argentina
dc.description.fil
Fil: Brea, Jorge. Grandata Labs; Argentina
dc.description.fil
Fil: Burroni, Javier. Grandata Labs; Argentina
dc.description.fil
Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
Social Network Analysis and Mining
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s13278-015-0277-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13278-015-0277-x
Archivos asociados