Artículo
A generalization of a result of Dong and Santos–Sturmfels on the Alexander dual of spheres and balls
Fecha de publicación:
02/2016
Editorial:
Elsevier Inc
Revista:
Journal of Combinatorial Theory Series A
ISSN:
0097-3165
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove a generalization of a result of Dong and Santos– Sturmfels about the homotopy type of the Alexander dual of balls and spheres. Our results involve NH-manifolds, which were recently introduced as the non-pure counterpart of classical polyhedral manifolds. We show that the Alexander dual of an NH-ball is contractible and the Alexander dual of an NH-sphere is homotopy equivalent to a sphere. We also prove that NH-balls and NH-spheres arise naturally when considering the double duals of standard balls and spheres.
Palabras clave:
Simplicial Complexes
,
Combinatorial Manifolds
,
Alexander Dual
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Capitelli, Nicolás Ariel; Minian, Elias Gabriel; A generalization of a result of Dong and Santos–Sturmfels on the Alexander dual of spheres and balls; Elsevier Inc; Journal of Combinatorial Theory Series A; 138; 2-2016; 155-174
Compartir
Altmétricas