Artículo
Subspaces with extra invariance nearest to observed data
Fecha de publicación:
09/2016
Editorial:
Elsevier Inc
Revista:
Applied And Computational Harmonic Analysis
ISSN:
1063-5203
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that is to be invariant under translations by a prefixed additive subgroup of Rd containing Zd. This is important for example in situations where we need to deal with jitter error of the data. Here small means that our solution subspace should be generated by the integer translates of a small number of generators. An expression for the error in terms of the data is provided and we construct a Parseval frame for the optimal space. We also consider the problem of approximating F from generalized Paley–Wiener spaces of Rd that are generated by the integer translates of a finite number of functions. That is finitely generated shift invariant spaces that are translation invariant. We characterize these spaces in terms of multi-tile sets of Rd, and show the connections with recent results on Riesz basis of exponentials on bounded sets of Rd. Finally we study the discrete case for our approximation problem.
Palabras clave:
Sampling
,
Shift Invariant Spaces
,
Extra Invariance
,
Paley-Wiener Spaces
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cabrelli, Carlos; Mosquera, Carolina Alejandra; Subspaces with extra invariance nearest to observed data; Elsevier Inc; Applied And Computational Harmonic Analysis; 41; 2; 9-2016; 660-676
Compartir
Altmétricas