Mostrar el registro sencillo del ítem

dc.contributor.author
Hernández Lahme, Damián Gabriel  
dc.contributor.author
Sober, Samuel J.  
dc.contributor.author
Nemenman, Ilya  
dc.date.available
2023-02-22T10:02:44Z  
dc.date.issued
2022-03  
dc.identifier.citation
Hernández Lahme, Damián Gabriel; Sober, Samuel J.; Nemenman, Ilya; Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries; eLife Sciences Publications; eLife; 11; 3-2022; 1-28  
dc.identifier.issn
2050-084X  
dc.identifier.uri
http://hdl.handle.net/11336/188512  
dc.description.abstract
The problem of deciphering how low-level patterns (action potentials in the brain, amino acids in a protein, etc.) drive high-level biological features (sensorimotor behavior, enzymatic function) represents the central challenge of quantitative biology. The lack of general methods for doing so from the size of datasets that can be collected experimentally severely limits our understanding of the biological world. For example, in neuroscience, some sensory and motor codes have been shown to consist of precisely timed multi-spike patterns. However, the combinatorial complexity of such pattern codes have precluded development of methods for their comprehensive analysis. Thus, just as it is hard to predict a protein’s function based on its sequence, we still do not understand how to accurately predict an organism’s behavior based on neural activity. Here we introduce the unsupervised Bayesian Ising Approximation (uBIA) for solving this class of problems. We demonstrate its utility in an application to neural data, detecting precisely timed spike patterns that code for specific motor behaviors in a songbird vocal system. In data recorded during singing from neurons in a vocal control region, our method detects such codewords with an arbitrary number of spikes, does so from small data sets, and accounts for dependencies in occurrences of codewords. Detecting such comprehensive motor control dictionaries can improve our understanding of skilled motor control and the neural bases of sensorimotor learning in animals. To further illustrate the utility of uBIA, used it to identify the distinct sets of activity patterns that encode vocal motor exploration versus typical song production. Crucially, our method can be used not only for analysis of neural systems, but also for understanding the structure of correlations in other biological and nonbiological datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
eLife Sciences Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
decoding  
dc.subject
dictionaries  
dc.subject
bayesian  
dc.subject
neural  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-09T15:44:33Z  
dc.journal.volume
11  
dc.journal.pagination
1-28  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Hernández Lahme, Damián Gabriel. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Sober, Samuel J.. University of Emory; Estados Unidos  
dc.description.fil
Fil: Nemenman, Ilya. University of Emory; Estados Unidos  
dc.journal.title
eLife  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/68192  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7554/eLife.68192