Mostrar el registro sencillo del ítem
dc.contributor.author
Carrizo, Ivana
dc.contributor.author
Heineken, Sigrid Bettina
dc.date.available
2017-06-23T21:07:06Z
dc.date.issued
2014-09
dc.identifier.citation
Carrizo, Ivana; Heineken, Sigrid Bettina; Critical pairs of sequences of a mixed frame potential; Taylor & Francis; Numerical Functional Analysis And Optimization; 35; 6; 9-2014; 665-684
dc.identifier.issn
0163-0563
dc.identifier.uri
http://hdl.handle.net/11336/18830
dc.description.abstract
The classical frame potential in a finite dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the start point of a series of new results in frame theory, related to finding tight frames with determined length. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {αm}m=1,...,N in K, where K is R or C, we obtain necessary and sufficient conditions in order to have a dual pair of frames {fm}m=1,...,N , {gm}m=1,...,N such that hfm, gmi = αm for all m = 1, ..., N.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Finite Frames
dc.subject
Frame Potential
dc.subject
Dual Frames
dc.subject
Lagrange Multipliers
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Critical pairs of sequences of a mixed frame potential
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-23T14:12:25Z
dc.journal.volume
35
dc.journal.number
6
dc.journal.pagination
665-684
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Carrizo, Ivana. Universidad de Viena; Austria
dc.description.fil
Fil: Heineken, Sigrid Bettina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
Numerical Functional Analysis And Optimization
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01630563.2013.837483
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2013.837483
Archivos asociados