Mostrar el registro sencillo del ítem

dc.contributor.author
Senra, Daniela  
dc.contributor.author
Guisoni, Nara Cristina  
dc.contributor.author
Diambra, Luis Anibal  
dc.date.available
2023-02-16T19:06:29Z  
dc.date.issued
2022-01  
dc.identifier.citation
Senra, Daniela; Guisoni, Nara Cristina; Diambra, Luis Anibal; Origins: A protein network-based approach to quantify cell pluripotency from scRNA-seq data; Elsevier; MethodsX; 9; 101778; 1-2022; 1-12  
dc.identifier.uri
http://hdl.handle.net/11336/188303  
dc.description.abstract
Trajectory inference is a common application of scRNA-seq data. However, it is often necessary to previously determine the origin of the trajectories, the stem or progenitor cells. In this work, we propose a computational tool to quantify pluripotency from single cell transcriptomics data. This approach uses the protein-protein interaction (PPI) network associated with the differentiation process as a scaffold and the gene expression matrix to calculate a score that we call differentiation activity. This score reflects how active the differentiation network is in each cell. We benchmark the performance of our algorithm with two previously published tools, LandSCENT (Chen et al., 2019) and CytoTRACE (Gulati et al., 2020), for four healthy human data sets: breast, colon, hematopoietic and lung. We show that our algorithm is more efficient than LandSCENT and requires less RAM memory than the other programs. We also illustrate a complete workflow from the count matrix to trajectory inference using the breast data set. • ORIGINS is a methodology to quantify pluripotency from scRNA-seq data implemented as a freely available R package. • ORIGINS uses the protein-protein interaction network associated with differentiation and the data set expression matrix to calculate a score (differentiation activity) that quantifies pluripotency for each cell.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ORIGINS  
dc.subject
PROTEIN-PROTEIN INTERACTION NETWORKS  
dc.subject
SCRNA-SEQ  
dc.subject
STEM CELLS  
dc.subject
TRAJECTORY INFERENCE  
dc.subject.classification
Otros Tópicos Biológicos  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Origins: A protein network-based approach to quantify cell pluripotency from scRNA-seq data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-09T15:16:19Z  
dc.identifier.eissn
2215-0161  
dc.journal.volume
9  
dc.journal.number
101778  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Senra, Daniela. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Guisoni, Nara Cristina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
MethodsX  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mex.2022.101778  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://methods-x.com/article/S2215-0161(22)00158-3/fulltext