Artículo
Supercloseness on graded meshes for Q1 finite element approximation of a reaction–diffusion equation
Fecha de publicación:
04/2013
Editorial:
Elsevier Science
Revista:
Journal Of Computational And Applied Mathematics
ISSN:
0377-0427
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we analyze the standard piece-wise bilinear finite element approximation of a model reaction–diffusion problem. We prove supercloseness results when appropriate graded meshes are used. The meshes are those introduced in Durán and Lombardi (2005) [8] but with a stronger restriction on the graduation parameter. As a consequence we obtain almost optimal error estimates in the L 2 -norm thus completing the error analysis given in Durán and Lombardi (2005).
Palabras clave:
Finite Elements
,
Supercloseness
,
Superconvergence
,
Graded Meshes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Duran, Ricardo Guillermo; Lombardi, Ariel Luis; Prieto, Mariana Ines; Supercloseness on graded meshes for Q1 finite element approximation of a reaction–diffusion equation; Elsevier Science; Journal Of Computational And Applied Mathematics; 242; 4-2013; 232-247
Compartir
Altmétricas