Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Shimura correspondence for level p2 and the central values of L-series II

Pacetti, Ariel MartínIcon ; Tornaria, Gonzalo
Fecha de publicación: 11/2014
Editorial: World Scientific
Revista: International Journal Of Number Theory
ISSN: 1793-0421
e-ISSN: 1793-7310
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation.
Palabras clave: Shimura Correspondence , L-Series Special Values
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 387.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/18802
DOI: https://doi.org/10.1142/S179304211450047X
URL: http://www.worldscientific.com/doi/abs/10.1142/S179304211450047X
URL: https://arxiv.org/abs/math/0606578
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Pacetti, Ariel Martín; Tornaria, Gonzalo; Shimura correspondence for level p2 and the central values of L-series II; World Scientific; International Journal Of Number Theory; 10; 7; 11-2014; 1-41
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES