Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification

Rojas, Matias GabrielIcon ; Olivera, Ana CarolinaIcon ; Vidal, Pablo JavierIcon
Fecha de publicación: 07/2022
Editorial: Elsevier
Revista: Array
e-ISSN: 2590-0056
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining.
Palabras clave: CELLULAR GENETIC ALGORITHM , MEDICAL DATA CLASSIFICATION , METAHEURISTICS , MULTILAYER PERCEPTRON , TRAINING METHODS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 927.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/187877
URL: https://linkinghub.elsevier.com/retrieve/pii/S2590005622000339
DOI: http://dx.doi.org/10.1016/j.array.2022.100173
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Rojas, Matias Gabriel; Olivera, Ana Carolina; Vidal, Pablo Javier; Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification; Elsevier; Array; 14; 7-2022; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES