Mostrar el registro sencillo del ítem

dc.contributor.author
Blanco, Pablo Javier  
dc.contributor.author
Ziemer, Paulo G. P.  
dc.contributor.author
Bulant, Carlos Alberto  
dc.contributor.author
Ueki, Yasushi  
dc.contributor.author
Bass, Ronald  
dc.contributor.author
Räber, Lorenz  
dc.contributor.author
Lemos, Pedro A.  
dc.contributor.author
García García, Héctor M.  
dc.date.available
2023-02-14T11:10:06Z  
dc.date.issued
2022-01  
dc.identifier.citation
Blanco, Pablo Javier; Ziemer, Paulo G. P.; Bulant, Carlos Alberto; Ueki, Yasushi; Bass, Ronald; et al.; Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets; Elsevier Science; Medical Image Analysis; 75; 1-2022; 1-13  
dc.identifier.issn
1361-8415  
dc.identifier.uri
http://hdl.handle.net/11336/187853  
dc.description.abstract
egmentation of lumen and vessel contours in intravascular ultrasound (IVUS) pullbacks is an arduous and time-consuming task, which demands adequately trained human resources. In the present study, we propose a machine learning approach to automatically extract lumen and vessel boundaries from IVUS datasets. The proposed approach relies on the concatenation of a deep neural network to deliver a preliminary segmentation, followed by a Gaussian process (GP) regressor to construct the final lumen and vessel contours. A multi-frame convolutional neural network (MFCNN) exploits adjacency information present in longitudinally neighboring IVUS frames, while the GP regression method filters high-dimensional noise, delivering a consistent representation of the contours. Overall, 160 IVUS pullbacks (63 patients) from the IBIS-4 study (Integrated Biomarkers and Imaging Study-4, Trial NCT00962416), were used in the present work. The MFCNN algorithm was trained with 100 IVUS pullbacks (8427 manually segmented frames), was validated with 30 IVUS pullbacks (2583 manually segmented frames) and was blindly tested with 30 IVUS pullbacks (2425 manually segmented frames). Image and contour metrics were used to characterize model performance by comparing ground truth (GT) and machine learning (ML) contours. Median values (interquartile range, IQR) of the Jaccard index for lumen and vessel were 0.913, [0.882,0.935] and 0.940, [0.917,0.957], respectively. Median values (IQR) of the Hausdorff distance for lumen and vessel were , and , , respectively. Also, the mean value of lumen area predictions, and limits of agreement were , , while the mean value and limits of agreement of plaque burden were 0.0022, . The results obtained with the model developed in this work allow us to conclude that the proposed machine learning approach delivers accurate segmentations in terms of image metrics, contour metrics and clinically relevant variables, enabling its use in clinical routine by mitigating the costs involved in the manual management of IVUS datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IVUS  
dc.subject
Lumen  
dc.subject
Vessel  
dc.subject
Segmentation  
dc.subject
Deep learning  
dc.subject
Gaussian process  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fully automated lumen and vessel contour segmentation in intravascular ultrasound datasets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-09T16:03:11Z  
dc.journal.volume
75  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Blanco, Pablo Javier. National Institute of Science and Technology in Medicine Assisted by Scientific Computing; Brasil  
dc.description.fil
Fil: Ziemer, Paulo G. P.. National Institute of Science and Technology in Medicine Assisted by Scientific Computing; Brasil  
dc.description.fil
Fil: Bulant, Carlos Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Ueki, Yasushi. University of Bern; Suiza  
dc.description.fil
Fil: Bass, Ronald. Georgetown University School of Medicine; Estados Unidos  
dc.description.fil
Fil: Räber, Lorenz. University of Bern; Suiza  
dc.description.fil
Fil: Lemos, Pedro A.. Hospital Israelita Albert Einstein; Brasil  
dc.description.fil
Fil: García García, Héctor M.. Georgetown University School of Medicine; Estados Unidos  
dc.journal.title
Medical Image Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1361841521003078  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.media.2021.102262