Mostrar el registro sencillo del ítem

dc.contributor.author
Oliver, J.  
dc.contributor.author
Mora, D. F.  
dc.contributor.author
Huespe, Alfredo Edmundo  
dc.contributor.author
Weyler, R.  
dc.date.available
2017-06-23T19:16:51Z  
dc.date.issued
2012-07  
dc.identifier.citation
Oliver, J.; Mora, D. F.; Huespe, Alfredo Edmundo; Weyler, R.; A micromorphic model for steel fiber reinforced concrete; Elsevier; International Journal Of Solids And Structures; 49; 21; 7-2012; 2990-3007  
dc.identifier.issn
0020-7683  
dc.identifier.uri
http://hdl.handle.net/11336/18784  
dc.description.abstract
A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber–matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber–cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber–matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
High Performance Fiber Reinforced Concrete (Hpfrc)  
dc.subject
Failure of Hpfrc  
dc.subject
Short Reinforcement Fibers  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A micromorphic model for steel fiber reinforced concrete  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-21T18:38:34Z  
dc.journal.volume
49  
dc.journal.number
21  
dc.journal.pagination
2990-3007  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Oliver, J.. Universidad Politecnica de Catalunya; España  
dc.description.fil
Fil: Mora, D. F.. Universidad Politecnica de Catalunya; España  
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Weyler, R.. Universidad Politecnica de Catalunya; España  
dc.journal.title
International Journal Of Solids And Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijsolstr.2012.05.032  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768312002429?via%3Dihub