Artículo
Isomorphism conjectures with proper coefficients
Fecha de publicación:
07/2014
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(−,E(A)) of G-simplicial sets such that H⁎G(G/H,E(A))=E(A⋊H). The strong isomorphism conjecture for the quadruple (G,F,E,A) asserts that if X→Y is an equivariant map such that XH→YH is an equivalence for all H∈F, then HG(X,E(A))→HG(Y,E(A)) is an equivalence. In this paper we introduce an algebraic notion of (G,F)-properness for G-rings, modeled on the analogous notion for G-C-algebras, and show that the strong (G,F,E,P) isomorphism conjecture for (G,F)-proper P is true in several cases of interest in the algebraic K-theory context.
Palabras clave:
Farrell-Jones Conjecture
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Ellis, Eugenia; Isomorphism conjectures with proper coefficients; Elsevier Science; Journal Of Pure And Applied Algebra; 218; 7; 7-2014; 1224-1263
Compartir
Altmétricas