Mostrar el registro sencillo del ítem

dc.contributor.author
Mansilla Alvarez, Luis Alonso  
dc.contributor.author
Bulant, Carlos Alberto  
dc.contributor.author
Ares, G. D.  
dc.contributor.author
Feijóo, Raúl Antonino  
dc.contributor.author
Blanco, P. J.  
dc.date.available
2023-02-13T17:09:20Z  
dc.date.issued
2022-02  
dc.identifier.citation
Mansilla Alvarez, Luis Alonso; Bulant, Carlos Alberto; Ares, G. D.; Feijóo, Raúl Antonino; Blanco, P. J.; Feasibility of coronary blood flow simulations using mid-fidelity numeric and geometric models; Springer Heidelberg; Biomechanics And Modeling In Mechanobiology; 21; 1; 2-2022; 317-334  
dc.identifier.issn
1617-7959  
dc.identifier.uri
http://hdl.handle.net/11336/187783  
dc.description.abstract
The fractional flow reserve index (FFR) is currently used as a gold standard to quantify coronary stenosis’s functional relevance. Due to its highly invasive nature, the development of noninvasive surrogates based on simulations has drawn much attention in recent years, emphasizing efficient strategies that enable translational research. The focus of this work is twofold. First, to assess the feasibility of using a mid-fidelity numerical strategy (transversally enriched pipe element method, TEPEM), placed between low- and high-fidelity models, for the estimation of flow-related quantities, such as FFR and wall shear stress (WSS). Low-fidelity models, as zero- or one-dimensional models, are computationally inexpensive but in detriment of poorer spatially detailed predictions. On the other hand, high-fidelity models, such as classical three-dimensional numerical approximations, can provide detailed predictions but their transition to clinical application is prohibitive due to high computational costs. As a second goal, we quantify the impact of the length of lateral branches in the blood flow through the interrogated vessel of interest to further reduce the computational burden. Both studies are addressed considering a cohort of 17 coronary geometries. A total of 20 locations were selected to estimate the FFR index for a wide range of Coronary Flow Reserve (CFR) scenarios. Numerical results suggest that the mid-fidelity TEPEM model is a reliable approach for the efficient estimation of the FFR index and WSS, with an error in the order of 1 % and 5 % , respectively, when compared to the high-fidelity prediction. Moreover, such mid-fidelity models require much less computational resources, in compliance with infrastructure frequently available in the clinic, by achieving a speedup between 30 and 60 times compared to a conventional finite element approach. Also, we show that shortening peripheral branches does not introduce considerable perturbations either in the flow patterns, in the wall shear stress, or the pressure drop. Comparing the different geometric models, the error in the estimation of FFR index and WSS is reduced to less than 0.1 % and 2 % , respectively.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMPUTATIONAL FLUID DYNAMICS  
dc.subject
FRACTIONAL FLOW RESERVE  
dc.subject
MID-FIDELITY SIMULATIONS  
dc.subject
REDUCED-ORDER MODEL  
dc.subject.classification
Otras Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Feasibility of coronary blood flow simulations using mid-fidelity numeric and geometric models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-09T16:03:03Z  
dc.journal.volume
21  
dc.journal.number
1  
dc.journal.pagination
317-334  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Mansilla Alvarez, Luis Alonso. No especifíca;  
dc.description.fil
Fil: Bulant, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Ares, G. D.. Universidad Nacional de Mar del Plata; Argentina  
dc.description.fil
Fil: Feijóo, Raúl Antonino. No especifíca;  
dc.description.fil
Fil: Blanco, P. J.. No especifíca;  
dc.journal.title
Biomechanics And Modeling In Mechanobiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10237-021-01536-3