Artículo
Non-equilibrium Phase Transitions: Activated Random Walks at Criticality
Fecha de publicación:
06/2014
Editorial:
Springer
Revista:
Journal Of Statistical Physics
ISSN:
0022-4715
e-ISSN:
1572-9613
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we present rigorous results on the critical behavior of the Activated Random Walk model. We conjecture that on a general class of graphs, including Z d , and under general initial conditions, the system at the critical point does not reach an absorbing state. We prove this for the case where the sleep rate λ is infinite. Moreover, for the one-dimensional asymmetric system, we identify the scaling limit of the flow through the origin at criticality. The case λ < +∞ remains largely open, with the exception of the one-dimensional totally-asymmetric case, for which it is known that there is no fixation at criticality.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cabezas, M.; Trivellato Rolla, Leonardo; Sidoravicius, V.; Non-equilibrium Phase Transitions: Activated Random Walks at Criticality; Springer; Journal Of Statistical Physics; 155; 6; 6-2014; 1112-1125
Compartir
Altmétricas