Artículo
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
Fecha de publicación:
07/2014
Editorial:
Springer
Revista:
Journal Of Statistical Physics
ISSN:
0022-4715
e-ISSN:
1572-9613
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density.
Palabras clave:
Gibbs Non Gibbs
,
Kac Potential
,
Large Deviations
,
Spin-Flip Dynamics
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo; Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction; Springer; Journal Of Statistical Physics; 156; 2; 7-2014; 203-220
Compartir
Altmétricas