Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Comparison of traditional model-based statistical methods with machine learning for the prediction of suicide behaviour

Grendas, Leandro Nicolás; Chiapella, Luciana CarlaIcon ; Rodante, Demian Emanuel; Daray, Federico ManuelIcon
Fecha de publicación: 01/2022
Editorial: Pergamon-Elsevier Science Ltd
Revista: Journal of Psychiatric Research
ISSN: 0022-3956
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psiquiatría

Resumen

Background: Despite considerable research efforts during the last five decades, the prediction of suicidal behaviour (SB) using traditional model-based statistical has been weak. This marks the need to explore new statistical methods. Objective: To compare the performance of Cox regression models versus Random Survival Forest (RSF) to predict SB. Methods: Using a data set of more than 300 high-risk suicidal patients from a multicenter prospective cohort study, we compare Cox regression models with RSF to address predictors of time to suicide reattempt. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Integrated Brier Score (IBS), sensitivity, and specificity. Results: A variant of the RSF denominated the RSFElimin, in which irrelevant predictor variables were eliminated from the model, presented the best accuracy, sensitivity, AUC and IBS. At the same time, the sensitivity of this method was slightly lower than that obtained with the Cox regression model with all predictor variables (CoxComp). Conclusion: The RSF, a machine learning model, seems more sensitive and precise than the traditional Cox regression model in predicting suicidal behaviour.
Palabras clave: MACHINE LEARNING , PREDICTION , RANDOM SURVIVAL FOREST , SUICIDAL BEHAVIOUR
Ver el registro completo
 
Archivos asociados
Tamaño: 1.352Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/187733
URL: https://linkinghub.elsevier.com/retrieve/pii/S0022395621006786
DOI: http://dx.doi.org/10.1016/j.jpsychires.2021.11.029
Colecciones
Articulos(OCA HOUSSAY)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Citación
Grendas, Leandro Nicolás; Chiapella, Luciana Carla; Rodante, Demian Emanuel; Daray, Federico Manuel; Comparison of traditional model-based statistical methods with machine learning for the prediction of suicide behaviour; Pergamon-Elsevier Science Ltd; Journal of Psychiatric Research; 145; 1-2022; 85-91
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES