Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A zero-inflated mixture spatially varying coefficient modeling of cholera incidences

Osei, Frank Badu; Stein, Alfred; Andreo, Verónica CarolinaIcon
Fecha de publicación: 04/2022
Editorial: Elsevier
Revista: Spatial Statistics
ISSN: 2211-6753
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad; Epidemiología

Resumen

Spatial disease modeling remains an important public health tool. For cholera, the presence of zero counts is common. The Poisson model is inadequate to (1) capture over-dispersion, and (2) distinguish between excess zeros arising from non-susceptible and susceptible populations. In this study, we develop zero-inflated (ZI) mixture spatially varying coefficient (SVC) models to (1) distinguish between the sources of the excess zeros and (2) uncover the spatially varying effects of precipitation and temperature (LST) on cholera. We demonstrate the potential of the models using cholera data from Ghana. A striking observation is that the Poisson model outperformed the ZI mixture models in terms of fit. The ZI Negative Binomial (ZINB) outperformed the ZI Poisson (ZIP) model. Subject to our objectives, we make inferences using the ZINB model. The proportion of zeros estimated with the ZINB model is 0.41 and exceeded what would have been estimated using a Poisson model which is 0.35. We observed the spatial trends of the effects of precipitation and LST to have both increasing and decreasing gradients; an observation implying that the use of only the global coefficients would lead to wrong inferences. We conclude that (1) the use of ZI mixture models has epidemiological significance. Therefore, its choice over the Poisson model should be based on an epidemiological concept rather than model fit and, (2) the extension of ZI mixture models to accommodate spatially varying coefficients uncovered remarkable varying effects of the covariates. These findings have significant implications for public health monitoring of cholera.
Palabras clave: BAYESIAN , CHOLERA , POISSON , SPATIALLY VARYING COEFFICIENTS , ZERO-INFLATED NEGATIVE BINOMIAL , ZERO-INFLATED POISSON
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.437Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/187707
URL: https://linkinghub.elsevier.com/retrieve/pii/S2211675322000240
DOI: http://dx.doi.org/10.1016/j.spasta.2022.100635
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Osei, Frank Badu; Stein, Alfred; Andreo, Verónica Carolina; A zero-inflated mixture spatially varying coefficient modeling of cholera incidences; Elsevier; Spatial Statistics; 48; 4-2022; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES