Artículo
Distributed optimal control problems for a class of elliptic hemivariational inequalities with a parameter and its asymptotic behavior
Fecha de publicación:
01/2022
Editorial:
Elsevier Science
Revista:
Communications In Nonlinear Science And Numerical Simulation
ISSN:
1007-5704
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study optimal control problems on the internal energy for a system governed by a class of elliptic boundary hemivariational inequalities with a parameter. The system has been originated by a steady-state heat conduction problem with non-monotone multivalued subdifferential boundary condition on a portion of the boundary of the domain described by the Clarke generalized gradient of a locally Lipschitz function. We prove an existence result for the optimal controls and we show an asymptotic result for the optimal controls and the system states, when the parameter, like a heat transfer coefficient, tends to infinity on a portion of the boundary.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Distributed optimal control problems for a class of elliptic hemivariational inequalities with a parameter and its asymptotic behavior; Elsevier Science; Communications In Nonlinear Science And Numerical Simulation; 104; 1-2022; 1-9
Compartir
Altmétricas