Mostrar el registro sencillo del ítem
dc.contributor.author
Gadella, Manuel
dc.contributor.author
Fortin, Sebastian Ezequiel
dc.contributor.author
Jorge, Juan Pablo
dc.contributor.author
Losada, Marcelo Adrián
dc.date.available
2023-02-10T11:07:33Z
dc.date.issued
2022-06
dc.identifier.citation
Gadella, Manuel; Fortin, Sebastian Ezequiel; Jorge, Juan Pablo; Losada, Marcelo Adrián; Mathematical Models for Unstable Quantum Systems and Gamow States; Molecular Diversity Preservation International; Entropy; 24; 6; 6-2022; 1-32
dc.identifier.issn
1099-4300
dc.identifier.uri
http://hdl.handle.net/11336/187547
dc.description.abstract
We review some results in the theory of non-relativistic quantum unstable systems. We account for the most important definitions of quantum resonances that we identify with unstable quantum systems. Then, we recall the properties and construction of Gamow states as vectors in some extensions of Hilbert spaces, called Rigged Hilbert Spaces. Gamow states account for the purely exponential decaying part of a resonance; the experimental exponential decay for long periods of time physically characterizes a resonance. We briefly discuss one of the most usual models for resonances: the Friedrichs model. Using an algebraic formalism for states and observables, we show that Gamow states cannot be pure states or mixtures from a standard view point. We discuss some additional properties of Gamow states, such as the possibility of obtaining mean values of certain observables on Gamow states. A modification of the time evolution law for the linear space spanned by Gamow shows that some non-commuting observables on this space become commuting for large values of time. We apply Gamow states for a possible explanation of the Loschmidt echo.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
COHERENT GAMOW STATES
dc.subject
GAMOW FUNCTIONALS
dc.subject
GAMOW VECTORS
dc.subject
INTRINSIC IRREVERSIBILITY AND LOSCHMIDT ECHO
dc.subject
RIGGED HILBERT SPACE
dc.subject
UNSTABLE QUANTUM SYSTEMS
dc.subject.classification
Física de Partículas y Campos
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Mathematical Models for Unstable Quantum Systems and Gamow States
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-02-09T15:18:24Z
dc.journal.volume
24
dc.journal.number
6
dc.journal.pagination
1-32
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Gadella, Manuel. Universidad de Valladolid; España
dc.description.fil
Fil: Fortin, Sebastian Ezequiel. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Jorge, Juan Pablo. Universidad Austral; Argentina. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Losada, Marcelo Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.journal.title
Entropy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/24/6/804
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/e24060804
Archivos asociados