Mostrar el registro sencillo del ítem

dc.contributor.author
Gadella, Manuel  
dc.contributor.author
Fortin, Sebastian Ezequiel  
dc.contributor.author
Jorge, Juan Pablo  
dc.contributor.author
Losada, Marcelo Adrián  
dc.date.available
2023-02-10T11:07:33Z  
dc.date.issued
2022-06  
dc.identifier.citation
Gadella, Manuel; Fortin, Sebastian Ezequiel; Jorge, Juan Pablo; Losada, Marcelo Adrián; Mathematical Models for Unstable Quantum Systems and Gamow States; Molecular Diversity Preservation International; Entropy; 24; 6; 6-2022; 1-32  
dc.identifier.issn
1099-4300  
dc.identifier.uri
http://hdl.handle.net/11336/187547  
dc.description.abstract
We review some results in the theory of non-relativistic quantum unstable systems. We account for the most important definitions of quantum resonances that we identify with unstable quantum systems. Then, we recall the properties and construction of Gamow states as vectors in some extensions of Hilbert spaces, called Rigged Hilbert Spaces. Gamow states account for the purely exponential decaying part of a resonance; the experimental exponential decay for long periods of time physically characterizes a resonance. We briefly discuss one of the most usual models for resonances: the Friedrichs model. Using an algebraic formalism for states and observables, we show that Gamow states cannot be pure states or mixtures from a standard view point. We discuss some additional properties of Gamow states, such as the possibility of obtaining mean values of certain observables on Gamow states. A modification of the time evolution law for the linear space spanned by Gamow shows that some non-commuting observables on this space become commuting for large values of time. We apply Gamow states for a possible explanation of the Loschmidt echo.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
COHERENT GAMOW STATES  
dc.subject
GAMOW FUNCTIONALS  
dc.subject
GAMOW VECTORS  
dc.subject
INTRINSIC IRREVERSIBILITY AND LOSCHMIDT ECHO  
dc.subject
RIGGED HILBERT SPACE  
dc.subject
UNSTABLE QUANTUM SYSTEMS  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mathematical Models for Unstable Quantum Systems and Gamow States  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-09T15:18:24Z  
dc.journal.volume
24  
dc.journal.number
6  
dc.journal.pagination
1-32  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Gadella, Manuel. Universidad de Valladolid; España  
dc.description.fil
Fil: Fortin, Sebastian Ezequiel. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Filosofía "Dr. Alejandro Korn"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Jorge, Juan Pablo. Universidad Austral; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Losada, Marcelo Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.journal.title
Entropy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/24/6/804  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/e24060804