Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Seismic data summarization with content-aware resizing

Gómez, Julián LuisIcon ; Velis, Danilo RubenIcon
Fecha de publicación: 04/2022
Editorial: Society of Exploration Geophysicists
Revista: Geophysics
ISSN: 0016-8033
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Geoquímica y Geofísica

Resumen

Seam carving (SC) is a computer vision algorithm that resizes natural images by removing their least informative regions. We adapt SC as a novel application to reduce the size of 2D and 3D seismic data with amplitude preservation. Unlike decimation and conventional resizing, the proposed structure-aware reduction algorithm keeps the data's most important structures and textures. In practice, the SC method uses a gradient-based energy operator and dynamic optimization to find the optimal reduction of the seismic data. We introduce an energy function that uses Gaussian kernels of variable size to compute the magnitude of the data derivatives and implement a quantitative measure to compare different SC alternatives. The proposed Gaussian-based algorithm yields reduced seismic data sets that preserve the main structures and textures of the original data even in the presence of noise. The reduced data are not downsized versions of the original image or volume. We see the seismic summary as representative new data that can help interpreters and processors in gaining insight and assessing the results of filters and seismic attributes with fewer computational resources. Keeping this in mind, the proposed content-aware method is a valuable tool for assisting users in seismic data analysis and interpretation.
Palabras clave: ALGORITHM , FILTERING , SIGNAL PROCESSING
Ver el registro completo
 
Archivos asociados
Tamaño: 6.323Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/187321
URL: https://library.seg.org/doi/10.1190/geo2021-0439.1
DOI: http://dx.doi.org/10.1190/geo2021-0439.1
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Gómez, Julián Luis; Velis, Danilo Ruben; Seismic data summarization with content-aware resizing; Society of Exploration Geophysicists; Geophysics; 87; 4; 4-2022; 133-141
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES