Mostrar el registro sencillo del ítem

dc.contributor.author
Cappa, Eduardo Pablo  
dc.contributor.author
Klutsch, Jennifer G.  
dc.contributor.author
Azcona, Jaime Sebastian  
dc.contributor.author
Ratcliffe, Blaise  
dc.contributor.author
Wei, Xiaojing  
dc.contributor.author
Letitia Da Ros  
dc.contributor.author
Liu, Yang  
dc.contributor.author
Chen, Charles  
dc.contributor.author
Benowicz, Andy  
dc.contributor.author
Sadoway, Shane  
dc.contributor.author
Mansfield, Shawn D.  
dc.contributor.author
Erbilgin, Nadir  
dc.contributor.author
Thomas, Barb R.  
dc.contributor.author
El-Kassaby, Yousry A.  
dc.date.available
2023-02-07T13:22:08Z  
dc.date.issued
2022-03  
dc.identifier.citation
Cappa, Eduardo Pablo; Klutsch, Jennifer G.; Azcona, Jaime Sebastian; Ratcliffe, Blaise; Wei, Xiaojing; et al.; Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program; Public Library of Science; Plos One; 17; 3-2022; 1-28  
dc.identifier.issn
1932-6203  
dc.identifier.uri
http://hdl.handle.net/11336/187151  
dc.description.abstract
Tree improvement programs often focus on improving productivity-related traits; however, under present climate change scenarios, climate change-related (adaptive) traits should also be incorporated into such programs. Therefore, quantifying the genetic variation and correlations among productivity and adaptability traits, and the importance of genotype by environment interactions, including defense compounds involved in biotic and abiotic resistance, is essential for selecting parents for the production of resilient and sustainable forests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality, drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce). We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224 SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP information to calculate, respectively, the average numerator and genomic relationship matrices, and univariate and multivariate individual-tree models to obtain estimates of (co) variance components. With few site-specific exceptions, all traits examined were under genetic control. Overall, higher heritability estimates were derived from the genomic- than their counterpart pedigree-based relationship matrix. Selection for height, generally, improved diameter and water use efficiency, but decreased wood density, microfibril angle, and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-based correlations for most trait pairs. High and positive genetic correlations between sites were observed (average 0.68), except for those pairs involving the highest elevation, warmer, and moister site, specifically for growth and microfibril angle. These results illustrate the advantage of using genomic information jointly with productivity and adaptability traits, and defense compounds to enhance tree breeding selection for changing climate.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PRODUCTIVITY AND CLIMATE-ADAPTABILITY TRAITS  
dc.subject
TREE IMPROVEMENT  
dc.subject
QUANTITATIVE PEDIGREE AND GENOMIC ANALYSIS  
dc.subject
WHITE SPRUCE  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-02-06T10:20:38Z  
dc.journal.volume
17  
dc.journal.pagination
1-28  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Klutsch, Jennifer G.. University of Alberta; Canadá  
dc.description.fil
Fil: Azcona, Jaime Sebastian. University of Alberta; Canadá  
dc.description.fil
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá  
dc.description.fil
Fil: Wei, Xiaojing. University of Alberta; Canadá  
dc.description.fil
Fil: Letitia Da Ros. University of British Columbia; Canadá  
dc.description.fil
Fil: Liu, Yang. University of British Columbia; Canadá  
dc.description.fil
Fil: Chen, Charles. Oklahoma State University; Estados Unidos  
dc.description.fil
Fil: Benowicz, Andy. Forest Stewardship And Trade Branch Alberta Agriculture; Canadá  
dc.description.fil
Fil: Sadoway, Shane. No especifíca;  
dc.description.fil
Fil: Mansfield, Shawn D.. University of British Columbia; Canadá  
dc.description.fil
Fil: Erbilgin, Nadir. University of Alberta; Canadá  
dc.description.fil
Fil: Thomas, Barb R.. University of Alberta; Canadá  
dc.description.fil
Fil: El-Kassaby, Yousry A.. University of British Columbia; Canadá  
dc.journal.title
Plos One  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264549  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0264549