Artículo
Some numerical radius inequality for several semi-Hilbert space operators
Fecha de publicación:
03/2022
Editorial:
Taylor & Francis Ltd
Revista:
Linear And Multilinear Algebra
ISSN:
0308-1087
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space (Formula presented.), which are bounded with respect to the seminorm induced by a positive operator A on (Formula presented.). Here A is not assumed to be invertible. Mainly, if we denote by (Formula presented.) and (Formula presented.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have (Formula presented.) where (Formula presented.) is the Moore-Penrose inverse of (Formula presented.). In addition, several new inequalities involving (Formula presented.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489–496].
Palabras clave:
A-ADJOINT OPERATOR
,
A-NUMERICAL RADIUS
,
INEQUALITY
,
POSITIVE OPERATOR
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Conde, Cristian Marcelo; Feki, Kais; Some numerical radius inequality for several semi-Hilbert space operators; Taylor & Francis Ltd; Linear And Multilinear Algebra; 3-2022; 1-18
Compartir
Altmétricas