Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Combining deep learning with SUPPOSe and compressed sensing for SNR-enhanced localization of overlapping emitters

Lacapmesure, Axel MauroIcon ; Brinatti Vazquez, Guillermo DanielIcon ; Mazzeo, Alejandro; Martinez, Sandra RitaIcon ; Martinez, Oscar EduardoIcon
Fecha de publicación: 03/2022
Editorial: Optical Society of America
Revista: Applied Optics
ISSN: 0003-6935
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Óptica

Resumen

We present gSUPPOSe, a novel, to the best of our knowledge, gradient-based implementation of the SUPPOSe algorithm that we have developed for the localization of single emitters. We study the performance of gSUPPOSe and compressed sensing STORM (CS-STORM) on simulations of single-molecule localization microscopy (SMLM) images at different fluorophore densities and in a wide range of signal-to-noise ratio conditions.We also study the combination of these methods with prior image denoising by means of a deep convolutional network. Our results show that gSUPPOSe can address the localization of multiple overlapping emitters even at a low number of acquired photons, outperforming CS-STORMin our quantitative analysis and having better computational times. We also demonstrate that image denoising greatly improves CS-STORM, showing the potential of deep learning enhanced localization on existing SMLM algorithms. The software developed in this work is available as open sourcePython libraries.
Palabras clave: Super-Resolution , Compressed-Sensing , SUPPOSe
Ver el registro completo
 
Archivos asociados
Tamaño: 23.34Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/186903
DOI: https://doi.org/10.1364/AO.444610
URL: https://opg.optica.org/ao/abstract.cfm?uri=ao-61-7-D39
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Lacapmesure, Axel Mauro; Brinatti Vazquez, Guillermo Daniel; Mazzeo, Alejandro; Martinez, Sandra Rita; Martinez, Oscar Eduardo; Combining deep learning with SUPPOSe and compressed sensing for SNR-enhanced localization of overlapping emitters; Optical Society of America; Applied Optics; 61; 7; 3-2022; D39-D49
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES