Artículo
Geometry of D'Atri spaces of type k
Fecha de publicación:
03/2010
Editorial:
Springer
Revista:
Annals Of Global Analysis And Geometry
ISSN:
0232-704X
e-ISSN:
1572-9060
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A Riemannian n-dimensional manifold M is a D'Atri space of type k (or k-D'Atri space), 1 ≤ k ≤ n - 1, if the geodesic symmetries preserve the k-th elementary symmetric functions of the eigenvalues of the shape operators of all small geodesic spheres in M. Symmetric spaces are k-D'Atri spaces for all possible k ≥ 1 and the property 1-D'Atri is the D'Atri condition in the usual sense. In this article we study some aspects of the geometry of k-D'Atri spaces, in particular those related to properties of Jacobi operators along geodesics. We show that k-D'Atri spaces for all k = 1,..., l satisfy that tr (Rvk), v a unit vector in TM, is invariant under the geodesic flow for all k = 1,..., l. Further, if M is k-D'Atri for all k = 1,..., n - 1, then the eigenvalues of Jacobi operators are constant functions along geodesics. In the case of spaces of Iwasawa type, we show that k-D'Atri spaces for all k = 1,..., n - 1 are exactly the symmetric spaces of noncompact type. Moreover, in the class of Damek-Ricci spaces, the symmetric spaces of rank one are characterized as those that are 3-D'Atri.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Druetta, Maria Josefina; Geometry of D'Atri spaces of type k; Springer; Annals Of Global Analysis And Geometry; 38; 2; 3-2010; 201-219
Compartir
Altmétricas