Mostrar el registro sencillo del ítem
dc.contributor.author
Rossa, Maximiliano
dc.contributor.author
Rinaldi, Carlos Alberto
dc.contributor.author
Ferrero, Juan Carlos
dc.date.available
2023-02-02T14:51:03Z
dc.date.issued
2010-01-15
dc.identifier.citation
Rossa, Maximiliano; Rinaldi, Carlos Alberto; Ferrero, Juan Carlos; Chemiluminescence from the Ba (3P)+N2O→BaO(A 1+)+N2 reaction: Collision energy effects on the product rotational alignment and energy release; American Institute of Physics; Journal of Chemical Physics; 132; 3; 15-1-2010; 3430401-3430412
dc.identifier.issn
0021-9606
dc.identifier.uri
http://hdl.handle.net/11336/186668
dc.description.abstract
Both fully dispersed unpolarized and polarized chemiluminescence spectra from the Ba (P3) + N2O reaction have been recorded under hyperthermal laser-ablated atomic beam-Maxwellian gas conditions at three specific average collision energies 〈 Ec 〉 in the range of 4.82-7.47 eV. A comprehensive analysis of the whole data series suggests that the A1+→X 1 + band system dominates the chemiluminescence. The polarization results revealed that the BaO (A 1 +) product rotational alignment is insensitive to its vibrational state ′ at 〈 Ec 〉 =4.82 eV but develops into an strong negative correlation between product rotational alignment and ′ at 7.47 eV. The results are interpreted in terms of a direct mechanism involving a short-range, partial electron transfer from Ba (P3) to N2O which is constrained by the duration of the collision, so that the reaction has a larger probability to occur when the collision time is larger than the time needed for N2O bending. The latter in turn determines that, at any given 〈 Ec 〉, collinear reactive intermediates are preferentially involved when the highest velocity components of the corresponding collision energy distributions are sampled. Moreover, the data at 4.82 eV suggest that a potential barrier to reaction which favors charge transfer to bent N2O at chiefly coplanar geometries is operative for most of the reactive trajectories that sample the lowest velocity components. Such a barrier would arise from the relevant ionic-covalent curve crossings occurring in the repulsive region of the covalent potential Ba (P3) N2O (1 +); from this crossing the BaO (A 1 +) product may be reached through mixings in the exit channel with potential energy surfaces leading most likely to the spin-allowed b Π3 and a 3 + products. The variation with increasing 〈 Ec 〉 of both the magnitude of the average BaO (A 1 +) rotational alignment and the BaO (A 1 +) rovibrational excitation, as obtained from spectral simulations of the unpolarized chemiluminescence spectra, consistently points to additional dynamic factors, most likely the development of induced repulsive energy release as the major responsible for the angular momentum and energy disposal at the two higher 〈 Ec 〉 studied. The results of a simplified version of the direct interaction with product repulsion-distributed as in photodissociation model do not agree with the observed average product rotational alignments, showing that a more realistic potential energy surface model will be necessary to explain the present results. © 2010 American Institute of Physics.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Chemiluminescence
dc.subject
Molecular reaction dynamics
dc.subject
Ba atom reactions
dc.subject
Collision energy effects
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Chemiluminescence from the Ba (3P)+N2O→BaO(A 1+)+N2 reaction: Collision energy effects on the product rotational alignment and energy release
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-01-31T12:29:25Z
dc.identifier.eissn
1089-7690
dc.journal.volume
132
dc.journal.number
3
dc.journal.pagination
3430401-3430412
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Rossa, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
dc.description.fil
Fil: Rinaldi, Carlos Alberto. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
dc.description.fil
Fil: Ferrero, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
dc.journal.title
Journal of Chemical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3294880
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.3294880
Archivos asociados