Artículo
On the affine group of a normal homogeneous manifold
Fecha de publicación:
04/2010
Editorial:
Springer
Revista:
Annals Of Global Analysis And Geometry
ISSN:
0232-704X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A very important class of homogeneous Riemannian manifolds are the so-called normal homogeneous spaces, which have associated a canonical connection. In this study, we obtain geometrically the (connected component of the) group of affine transformations with respect to the canonical connection for a normal homogeneous space. The naturally reductive case is also treated. This completes the geometric calculation of the isometry group of naturally reductive spaces. In addition, we prove that for normal homogeneous spaces the set of fixed points of the full isotropy is a torus. As an application of our results it follows that the holonomy group of a homogeneous fibration is contained in the group of (canonically) affine transformations of the fibers; in particular, this holonomy group is a Lie group (this is a result of Guijarro and Walschap).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Reggiani, Silvio Nicolás; On the affine group of a normal homogeneous manifold; Springer; Annals Of Global Analysis And Geometry; 37; 4; 4-2010; 351-359
Compartir
Altmétricas