Artículo
Z2-cohomology and spectral properties of flat manifolds of diagonal type
Fecha de publicación:
02/2010
Editorial:
Elsevier Science
Revista:
Journal Of Geometry And Physics
ISSN:
0393-0440
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the cohomology groups with Z2-coefficients for compact flat Riemannian manifolds of diagonal type MΓ = Γ {set minus} Rn by explicit computation of the differentials in the Lyndon-Hochschild-Serre spectral sequence. We obtain expressions for Hj (MΓ, Z2), j = 1, 2 and give an effective criterion for the non-vanishing of the second Stiefel-Whitney class w2 (MΓ). We apply the results to exhibit isospectral pairs with special cohomological properties; for instance, we give isospectral 5-manifolds with different H2 (MΓ, Z2), and isospectral 4-manifolds M, M′ having the same Z2-cohomology where w2 (M) = 0 and w2 (M′) ≠ 0. We compute the Z2-cohomology of all generalized Hantzsche-Wendtn-manifolds for n = 3, 4, 5 and we study H2 and w2 for a large n-dimensional family, Kn, with explicit computation for a subfamily of examples due to Lee and Szczarba.
Palabras clave:
BIEBERBACH GROUP
,
COHOMOLOGY
,
SPECTRAL GEOMETRY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Console, S.; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Z2-cohomology and spectral properties of flat manifolds of diagonal type; Elsevier Science; Journal Of Geometry And Physics; 60; 5; 2-2010; 760-781
Compartir
Altmétricas