Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

FGGA-lnc: Automatic gene ontology annotation of lncRNA sequences based on secondary structures

Spetale, Flavio EzequielIcon ; Murillo, JavierIcon ; Villanova, Gabriela VaninaIcon ; Bulacio, Pilar Estela; Tapia, Mayra Elizabeth
Fecha de publicación: 06/2021
Editorial: The Royal Society
Revista: Interface Focus
e-ISSN: 2042-8901
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks. But extensive experimental studies are required to build these networks. In this work, we present a graph-based machine learning method called FGGA-lnc for the automatic gene ontology (GO) annotation of lncRNAs across the three GO subdomains. We build upon FGGA (factor graph GO annotation), a computational method originally developed to annotate protein sequences from non-model organisms. In the FGGA-lnc version, a coding-based approach is introduced to fuse primary sequence and secondary structure information of lncRNA molecules. As a result, lncRNA sequences become sequences of a higher-order alphabet allowing supervised learning methods to assess individual GO-term annotations. Raw GO annotations obtained in this way are unaware of the GO structure and therefore likely to be inconsistent with it. The message-passing algorithm embodied by factor graph models overcomes this problem. Evaluations of the FGGA-lnc method on lncRNA data, from model and non-model organisms, showed promising results suggesting it as a candidate to satisfy the huge demand for functional annotations arising from high-throughput sequencing technologies.
Palabras clave: GENE ONTOLOGY , LNCRNA , PREDICTION
Ver el registro completo
 
Archivos asociados
Tamaño: 914.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/185985
URL: https://royalsocietypublishing.org/doi/10.1098/rsfs.2020.0064
DOI: http://dx.doi.org/10.1098/rsfs.2020.0064
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Spetale, Flavio Ezequiel; Murillo, Javier; Villanova, Gabriela Vanina; Bulacio, Pilar Estela; Tapia, Mayra Elizabeth; FGGA-lnc: Automatic gene ontology annotation of lncRNA sequences based on secondary structures; The Royal Society; Interface Focus; 11; 4; 6-2021; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES