Mostrar el registro sencillo del ítem

dc.contributor.author
Cagliero, Leandro Roberto  
dc.contributor.author
Szechtman, Fernando  
dc.date.available
2023-01-27T16:02:00Z  
dc.date.issued
2015-10  
dc.identifier.citation
Cagliero, Leandro Roberto; Szechtman, Fernando; Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic; Taylor & Francis; Communications In Algebra; 44; 1; 10-2015; 1-10  
dc.identifier.issn
0092-7872  
dc.identifier.uri
http://hdl.handle.net/11336/185954  
dc.description.abstract
Let F be an algebraically closed field and consider the Lie algebra = ⟨ x ⟩ ⋉ , where ad x acts diagonalizably on the abelian Lie algebra . Refer to a -module as admissible if [, ] acts via nilpotent operators on it, which is automatic if chr(F) = 0. In this article, we classify all indecomposable -modules U which are admissible as well as uniserial, in the sense that U has a unique composition series.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INDECOMPOSABLE MODULE  
dc.subject
LIE ALGEBRA  
dc.subject
UNISERIAL MODULE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Indecomposable modules of 2-step solvable Lie algebras in arbitrary characteristic  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-01-19T11:22:02Z  
dc.identifier.eissn
1532-4125  
dc.journal.volume
44  
dc.journal.number
1  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Szechtman, Fernando. University Of Regina; Canadá  
dc.journal.title
Communications In Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927872.2014.975352  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/00927872.2014.975352