Mostrar el registro sencillo del ítem

dc.contributor.author
Salvai, Marcos Luis  
dc.date.available
2023-01-26T19:14:18Z  
dc.date.issued
2014-12  
dc.identifier.citation
Salvai, Marcos Luis; Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space; Springer Wien; Monatshefete Fur Mathematik; 175; 4; 12-2014; 613-619  
dc.identifier.issn
0026-9255  
dc.identifier.uri
http://hdl.handle.net/11336/185836  
dc.description.abstract
Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Wien  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GEODESIC  
dc.subject
MANIFOLD OF EMBEDDINGS  
dc.subject
REFLECTIVE SUBMANIFOLD  
dc.subject
SYMMETRIC SPACE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-01-23T16:42:19Z  
dc.journal.volume
175  
dc.journal.number
4  
dc.journal.pagination
613-619  
dc.journal.pais
Austria  
dc.journal.ciudad
Viena  
dc.description.fil
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.journal.title
Monatshefete Fur Mathematik  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-014-0642-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00605-014-0642-2