Mostrar el registro sencillo del ítem
dc.contributor.author
Costanza, Vicente
dc.contributor.author
Rivadeneira Paz, Pablo Santiago
dc.contributor.author
Gómez Múnera, John Anderson
dc.date.available
2017-06-21T20:01:58Z
dc.date.issued
2016-10
dc.identifier.citation
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Gómez Múnera, John Anderson; An efficient cost reduction procedure for bounded-control LQR problems; Springer; Computational And Applied Mathematics; 10-2016; 1-22
dc.identifier.issn
2238-3603
dc.identifier.uri
http://hdl.handle.net/11336/18580
dc.description.abstract
A novel approach has been developed for approximating the solution to the constrained LQR problem, based on updating the final state and costate of a related regular problem, and on slightly shifting the switching times (the instants when the control meets the constraints). The main result is the expression of a suboptimal control in feedback form using the solution of some compatible Riccati equation. The gradient method is applied to reduce the cost via explicit algebraic formula for its partial derivatives with respect to the hidden final state/costate of the related regular problem and to the switching times. The numerical methodis termed efficient because it does not involve integrations of states or cost trajectories, and reduces to its minimum the dimension of the unknown parameters at the final condition. All the relevant objects are calculated from a few auxiliary matrices, which are computed onlyonce. The scheme is here applied to two case studies whose optimal solutions are known. The first example is a two-dimensional model of the "cheapest stop of a train" problem. The second one refers to the temperature control of a metallic strip leaving a multi-stand rollingmill, a problem with a high-dimensional state.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Optimal Control
dc.subject
Restricted Controls
dc.subject
Lqr Problem
dc.subject
Gradient Methods
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
An efficient cost reduction procedure for bounded-control LQR problems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-08T19:28:04Z
dc.identifier.eissn
1807-0302
dc.journal.pagination
1-22
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
dc.description.fil
Fil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina. Universidad Nacional de Colombia; Colombia
dc.description.fil
Fil: Gómez Múnera, John Anderson. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
dc.journal.title
Computational And Applied Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s40314-016-0393-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40314-016-0393-x
Archivos asociados