Mostrar el registro sencillo del ítem

dc.contributor.author
Ziege, Ricardo  
dc.contributor.author
Tsirigoni, Anna Maria  
dc.contributor.author
Large, Bastien  
dc.contributor.author
Serra, Diego Omar  
dc.contributor.author
Blank, Kerstin G.  
dc.contributor.author
Hengge, Regine  
dc.contributor.author
Fratzl, Peter  
dc.contributor.author
Bidan, Cécile M.  
dc.date.available
2023-01-26T17:10:48Z  
dc.date.issued
2021-11  
dc.identifier.citation
Ziege, Ricardo; Tsirigoni, Anna Maria; Large, Bastien; Serra, Diego Omar; Blank, Kerstin G.; et al.; Adaptation of Escherichia coli Biofilm Growth, Morphology, and Mechanical Properties to Substrate Water Content; American Chemical Society; ACS Biomaterials Science and Engineering; 7; 11; 11-2021; 5315-5325  
dc.identifier.issn
2373-9878  
dc.identifier.uri
http://hdl.handle.net/11336/185802  
dc.description.abstract
Biofilms are complex living materials that form as bacteria become embedded in a matrix of self-produced protein and polysaccharide fibers. In addition to their traditional association with chronic infections or clogging of pipelines, biofilms currently gain interest as a potential source of functional material. On nutritive hydrogels, micron-sized Escherichia coli cells can build centimeter-large biofilms. During this process, bacterial proliferation, matrix production, and water uptake introduce mechanical stresses in the biofilm that are released through the formation of macroscopic delaminated buckles in the third dimension. To clarify how substrate water content could be used to tune biofilm material properties, we quantified E. coli biofilm growth, delamination dynamics, and rigidity as a function of water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that softer substrates with high water content promote biofilm spreading kinetics, while stiffer substrates with low water content promote biofilm delamination. The delaminated buckles observed on biofilm cross sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, microindentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to substrate water content, which might be used for tuning their material properties in view of further applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BIOFILM  
dc.subject
ESCHERICHIA COLI  
dc.subject
LIVING MATERIALS  
dc.subject
MORPHOGENESIS  
dc.subject
WATER CONTENT  
dc.subject.classification
Biofísica  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Adaptation of Escherichia coli Biofilm Growth, Morphology, and Mechanical Properties to Substrate Water Content  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-19T16:02:28Z  
dc.journal.volume
7  
dc.journal.number
11  
dc.journal.pagination
5315-5325  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Ziege, Ricardo. Max Planck Institute Of Colloids And Interfaces; Alemania  
dc.description.fil
Fil: Tsirigoni, Anna Maria. Max Planck Institute Of Colloids And Interfaces; Alemania  
dc.description.fil
Fil: Large, Bastien. Max Planck Institute Of Colloids And Interfaces; Alemania  
dc.description.fil
Fil: Serra, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina  
dc.description.fil
Fil: Blank, Kerstin G.. Max Planck Institute Of Colloids And Interfaces; Alemania  
dc.description.fil
Fil: Hengge, Regine. Humboldt Universität Zu Berlin; Alemania  
dc.description.fil
Fil: Fratzl, Peter. Max Planck Institute Of Colloids And Interfaces; Alemania  
dc.description.fil
Fil: Bidan, Cécile M.. Max Planck Institute Of Colloids And Interfaces; Alemania  
dc.journal.title
ACS Biomaterials Science and Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsbiomaterials.1c00927